
 

CMSC 201 – Computer Science I for Majors Page 1 

CMSC 201 Fall 2016 
Project 1 – Connect Four 

 
Assignment: Project 1 – Connect Four 
Due Date: Wednesday, November 16nd, 2016 by 8:59:59 PM 
Value: 80 points 
 
Collaboration: For Project 1, collaboration is not allowed – you must work 
individually.  You may still come to office hours for help, but you may not work 
with any other CMSC 201 students. 
 
 
Your collaboration statement should state that 
Collaboration was not allowed on this assignment. 

 
 
 
Make sure that you have a complete file header comment at the top of your 
file, and that all of the information is correctly filled out. 
 
 

# File:    FILENAME.py 

# Author:  YOUR NAME 

# Date:    THE DATE 

# Section: YOUR DISCUSSION SECTION NUMBER 

# E-mail:  YOUR_EMAIL@umbc.edu 

# Description: 

#    DESCRIPTION OF WHAT THE PROGRAM DOES 

# Collaboration:  

#    COLLABORATION STATEMENT GOES HERE 



 

CMSC 201 – Computer Science I for Majors Page 2 

 
Project 1 is the first assignment where we won’t be telling you exactly what to 
do!  You will get the chance to make your own decisions about how you want 
your program to handle things, what its functions should be called, and how 
you want to go about designing it. 
 
Project 1 will also be substantially longer than any of the single homework 
assignments you’ve completed so far, so make sure to take the time to plan 
ahead, and don’t do any “cowboy” coding! 
 
Remember to enable Python 3 before running and testing your code: 
 scl enable python33 bash 

 
 

Instructions 
 
For this assignment, you'll need to follow the class coding standards, a 
set of rules designed to make your code clear and readable. The class coding 
standards are on the website, linked at the top of the “Assignments” page.  
You can also access them directly via this URL (http://goo.gl/yEoGfC). 
 

You should be commenting your code, and using constants in your 
code (not magic numbers or strings). 

Any numbers other than 0 or 1 are magic numbers! 
 

Adhere to the coding standards by including function header comments 
for each of the functions (other than main).  Follow the instructions and 
example provided in the coding standards document when creating your 
function header comments.  Failing to include function header comments will 
lose you points. 

Re-read the coding standards! 
 

You will lose major points if you do not following the 201 coding standards. 
 
 
NOTE: Your filename for this project must be proj1.py 

 
NOTE:  You must use main() in your file. 

 

http://goo.gl/yEoGfC


 

CMSC 201 – Computer Science I for Majors Page 3 

 

Details 
 
For this project, you are going to be building the classic game Connect Four.  
If you are not familiar with the game, the Wikipedia page has more details 
(https://en.wikipedia.org/wiki/Connect_Four).  In our game, Player 1 is an “x” 
and Player 2 is an “o”.  If any player gets four of their pieces in a row 
(horizontally, vertically, or diagonally), they win.  When the board fills up 
completely and neither player has won, the game ends in a draw. 
 
 
The game starts by asking the user if they would like to load a game from a 
file; this is the only time the user has the option to do so. 
 
If they choose not to load a game, the program should prompt the user for the 
desired size of their board: both row and column should be gotten from the 
user (in that order).  Both row and column must be at least 5; if they enter a 
smaller number, the program must prompt the user again. 
 
Users then choose a column to put their piece in; the piece will be placed at 
the “bottom” of the column.  Column numbering must start at 1, not zero!  
If the user chooses an invalid column or a column that is already full, the 
program must prompt the user again. 
 
At any time, instead of choosing their next column, the user can choose to 
save the game, simply by entering “s”.  Doing so should immediately save the 
game to a file (ask the user what they want the filename to be).  The format in 
which the game is saved is up to you, but you should store at least the board 
and the player whose turn it currently is.  After the game is saved, play should 
continue as normal (ask the same user for their column choice again).  See 
the sample output for an example of this behavior. 
 
After a game ends (in a draw or in a win), the user should be asked if they 
want to play again.  If they choose to play again, they should be asked for the 
dimensions of the next game’s board (row and column). 
 
The user can exit the game by choosing “n” after a game has ended, or by 
hitting CTRL+C at any point in time. 

https://en.wikipedia.org/wiki/Connect_Four


 

CMSC 201 – Computer Science I for Majors Page 4 

 

More Details 
 
Some additional requirements: 

1. The game will played by two human players – you do NOT need to 
worry about a computer player for this assignment. 

2. Player 1 always goes first when a new game is started.  (The only 
exception is when loading a game saved by Player 2.) 

3. You must show the updated board between each player’s turn. 
4. You must always tell the user their options (range of numbers, “s” to 

save, etc.) when asking them for a choice (see sample output). 
5. The game must output a message when a draw happens. 
6. The game must output a message when one player wins (and must 

state which player won). 
7. If the user chooses to play another game after one ends, the program 

must reprompt for new row and column sizes, and use them in the new 
game. 

 
 

Input Validation 
 
For this project, we will require that you validate input from the user.  You can 
assume that the user will enter the right type of input, but not that they will 
enter a correct value.  In other words, a user will always give an integer when 
you expect one, but it may be a negative or otherwise invalid value. 
 
You will need to validate the following things: 

 When asked to enter the number of rows and columns, the user might 
enter any whole number.  If the number is less than 5, they should be 
prompted for a new number. 

 When asked a yes/no question, the user might enter anything.  You 
should only accept lowercase “y” (for yes) or lowercase “n” (for no).  If 
they enter anything else, they should be prompted again. 

 When asked to choose a column to place their piece in, the user might 
enter any whole number, or a lowercase “s” (to indicate they want to 
save).  They will not enter any other strings.  If they choose an invalid 
integer (a column that does not exist, such as -1 or 99), they should be 
prompted again. 



 

CMSC 201 – Computer Science I for Majors Page 5 

Sample Output 
The sample output for this project is long enough that we have made it 
available as a separate file.  You can find it on the assignment page on the 
course website, or by clicking here (https://goo.gl/WfKRG9).  It contains 
examples of input validation, winning, drawing, different board sizes, etc. 
 
Your board should be displayed exactly as shown in the sample output.  
Blank spots should be represented by underscores, player tokens should be 
represented by “x” (for Player 1) or “o” (for Player 2), and each spot should be 
separated by a space when it is printed out. 
 
 

Sample Saved Game Files 
We have also provided two sample saved game files for you. They are the 
same ones that are saved to (and later loaded from) in the sample output.  
You can download them directly to your proj1 directory using the commands 
 
cp /afs/umbc.edu/users/k/k/k38/pub/cs201/save1.txt . 
cp /afs/umbc.edu/users/k/k/k38/pub/cs201/save2.txt . 
 
Your program does not need to follow the layout or format of the provided 
save files.  You can use any method or style you like.  As long as your 
function to load from your saved file in your program works correctly, it can 
look however you want.  We have provided these sample saved game files 
as an example of one of the many ways to save a Connect Four game. 
 
 
However you decide to format your save files, it is important to keep in mind 
what you will need to do to read them in later.  Writing the entire board 
straight to the file is easy: you simply type write(str(connect4Board)) 

or something similar. But doing so makes loading very difficult, because you 
have to handle reading in a board that looks like this: 
 

[['_', 'o', 'x', '_', '_', '_', '_', 

'_', '_'], ['x', 'x', 'o', 'x', '_', 

'o', 'x', '_', 'o'], etc... 

 

https://goo.gl/WfKRG9


 

CMSC 201 – Computer Science I for Majors Page 6 

 

Advice and Suggestions 
 
Remember what we’ve covered so far!  Do not try to program the entire game 
up at once, and don’t “cowboy code.”  You need to break this program down 
into simple pieces that you code and test one at a time. 
 
HINT: You should represent the board as a two-dimensional list. 
 
Here is one possible way you could tackle this problem: 

1. Ignore saving, loading, and checking for win or draw.  Leave those until 
you know everything else works. 

2. Get the size of the board from the user and create it. 
a. Be able to print out the board. 

3. Use a “temporary” main() to interact and test each function as you 

create and write them. 
4. Figure out how to “switch” turns from one player to another. 
5. Be able to validate the user input for choosing a column. 

a. Remember that “s” is a valid option, even if your code doesn’t do 
anything with it just yet. 

6. Update the board  
a. Make sure it’s the right column and the right player’s piece. 

 
Once all of that works, and you’ve tested it completely, then you can start 
writing the code to handle draws, wins, and saves and loads.  (Work on them 
separately!  Draw is probably the easiest.) 
Pay close attention to the sample output provided when testing your own 
code.



 

CMSC 201 – Computer Science I for Majors Page 7 

 

Submitting 
 
Once your proj1.py file is complete, it is time to turn it in with the submit 

command.  (You may turn in the file multiple times as you complete each 
function.  To do so, simply submit proj1.py each time you complete a part 

of the homework.  Each new submit will overwrite the old file.) 

 
You must be logged into your GL account, and you must be in the same 
directory as your Project 1 python file.  To double-check this, you can type 
ls. 

 
linux1[3]% ls 

proj1.py 

linux1[4]% █ 

 
To submit your Project 1 python files, we use the submit command, where 

the class is cs201, and the assignment is PROJ1.  Type in (all on one line) 

submit cs201 PROJ1 proj1.py and press enter. 

 
linux1[4]% submit cs201 PROJ1 proj1.py 

Submitting proj1.py...OK 

linux1[5]% █ 

 
If you don’t get a confirmation like the one above, check that you have not 
made any typos or errors in the command. 
 
 
You can check that your homework was submitted by following the directions 
in Homework 0.  Double-check that you submitted your homework correctly, 
since an empty file will result in a grade of zero for this assignment. 
 
 


